報告題目:Rota's Program on Algebraic Operators
報 告 人:高興 教授 蘭州大學
報告時間:2021年6月17日 8:30-9:30
報告地點:騰訊會議:185 322 986
校内聯系人:生雲鶴 shengyh@jlu.edu.cn
報告摘要: Many years ago, Rota proposed a program on determining algebraic identities that can be satisfied by linear operators. After an extended period of dormant, advancement on this program picked up speed in recent years, thanks to progresses on operated algebras and Grobner-Shirshov bases. The advancement was achieved in a series of papers from special cases to more general situations. This progresses show that Rota's insight can be manifested very broadly, for other algebraic structures such as Lie algebras, and further in the context of operads. This talk gives a survey on the motivation, early developments and recent advances on Rota's program, for linear operators on associative algebras and Lie algebras. Emphasis will be given on the applications of rewriting systems and Grobner-Shirshov bases.
報告人簡介:高興,博士,蘭州大學“萃英學者”、教授,博士生導師。于2010年7月在蘭州大學數學與統計學院獲得博士學位,留校工作至今。在2015年8月至2016年8月間,在美國Rutgers大學交流訪問。主要從事Rota-Baxter代數和代數組合等領域的研究, 在Journal of Algebra、 Journal of Pure and Applied Algebra、J. Algebraic Combin. 等國際期刊上發表SCI學術論文四十餘篇。主持數學天元基金、青年科學基金、國家自然科學基金面上項目和甘肅省自然科學基金項目, 獲甘肅省自然科學獎二等獎,出版教材一本。