報告題目:Monitoring mean and variance change-points in long-memory time series
報 告 人:陳占壽 教授 青海師範大學
報告時間:2021年6月18日 14:30-15:30
報告地點:騰訊會議 ID:217 884 771會議密碼:0618
校内聯系人:朱複康 fzhu@jlu.edu.cn
報告摘要:In this paper, we propose two ratio-type statistics to sequentially detect mean and variance change-points in the long-memory time series. The limiting distributions of monitoring statistics under the no change-point null hypothesis, alternative hypothesis as well as change-point misspecified hypothesis are proved. In particular, a sieve bootstrap approximation method is proposed to determine the critical values. Simulations indicate that the new monitoring procedures have better finite sample performance than the available off-line tests when the change-point nears to the beginning time of monitoring, and can discriminate between mean and variance change-point. Finally, we illustrate our procedures via two real data sets: a set of annual volume of discharge data of the Nile river, and a set of monthly temperature data of northern hemisphere. We find a new variance change-point in the latter data.
報告人簡介:陳占壽,男,漢族,1982年出生,青海師範大學數學與統計學院副院長,教授,博士,南京信息工程大學兼職博導,中組部“西部之光”訪問學者,加拿大英屬哥倫比亞大學訪問學者,青海省“高端創新人才千人計劃”拔尖人才,青海省高校“135高層次人才培養工程”拔尖學科帶頭人,青海省自然科學與工程技術學科帶頭人,省級骨幹教師,校學術委員會委員;主要從事時間序列變點分析,小區域估計,Bootstrap等方面的研究工作,主持完成國家自然科學基金2項,青海省自然科學基金4項;發表科研論文50餘篇,出版學術專著一部,獲青海省自然科學優秀論文三等獎2項。