報告題目:Locally Adaptive Sparse Additive Quantile Regression Model with Total Variation Penalty
報 告 人: 練恒 副教授 香港城市大學
報告時間:2022年4月20日 下午1:30-2:30
報告地點:騰訊會議 ID:225-886-256
或點擊鍊接直接加入會議:https://meeting.tencent.com/dm/03Lf9P5UK7hE
校内聯系人:趙世舜 zhaoss@jlu.edu.cn
報告摘要:High-dimensional additive quantile regression model via penalization provides a powerful tool for analyzing complex data in many contemporary applications. Despite the fast developments, how to combine the strengths of additive quantile regression with total variation penalty with theoretical guarantees still remains unexplored. In this paper, we propose a new methodology for sparse additive quantile regression model over bounded variation function classes via the empirical norm penalty and the total variation penalty for local adaptivity. Theoretically, we prove that the proposed method achieves the optimal convergence rate under mild assumptions. Moreover, an alternating direction method of multipliers (ADMM) based algorithm is developed. Both simulation results and real data analysis confirm the effectiveness of our method.
報告人簡介:練恒,現任香港城市大學數學系副教授,于2000年在中國科學技術大學獲得數學和計算機學士學位,2007年在美國布朗大學獲得計算機碩士,經濟學碩士和應用數學博士學位。先後在新加坡南洋理工大學,澳大利亞新南威爾士大學,和香港城市大學工作。在高水平國際期刊上發表學術論文30多篇,包括《Annals of Statistics》、《Journal of the Royal Statistical Society,Series B》、《Journal of the American Statistical Association》、《Journal of Machine Learning Research》、《IEEE Transactions on Pattern Analysis and Machine Intelligence》. 研究方向包括高維數據分析,函數數據分析,機器學習等。