報告題目:A method of local influence analysis in sufficient dimension reduction
報 告 人:陳飛 教授
所在單位:雲南财經大學
報告時間:2022年7月4日 星期一 下午14:00-15:00
報告地點:騰訊會議 ID:755-805-568 會議密碼:0704
報告摘要:A general framework for a local influence analysis is developed for sufficient dimension reduction when the data likelihood is absent and the inference result is a space rather than a vector. A clear and intuitive interpretation of this approach is described. Its application to the sliced inverse regression is presented, together with its invariance properties. A data trimming strategy is also suggested, based on the influence assessment for observations provided by our method. A simulation study and a real-data analysis are presented. The results indicate that the local influence analysis avoids the masking effect, and that the data trimming provides a substantial increase in the inference accuracy.
報告人簡介: 陳飛,香港中文大學統計學博士,教授,博士生導師,雲南财經大學統計與伟德线上平台院長。主要從事降維理論、統計診斷、含潛變量的模型等領域的研究工作,先後主持國家自然科學基金項目4項,論文發表于Statistica Sinica, JMVA,J COMPUT GRAPH STAT,PSYCHOMETRIKA,Statistical Analysis and Data Mining等期刊。