報告題目:Title: Distributed estimation of support vector machines for matrix data
報 告 人: 練恒 副教授 香港城市大學
報告時間:2022年9月21日 星期三14:30-15:30
報告地點:騰訊會議:496457998
校内聯系人:趙世舜 zhaoss@jlu.edu.cn
報告摘要:Discrimination problems are of significant interest in the machine learning literature. There has been growing interest in extending traditional vector-based machine learning techniques to their matrix forms. In this paper, we investigate the statistical properties of the nuclear-norm-based regularized linear support vector machines, in particular establishing the convergence rate of the estimator in the high-dimensional setting. Furthermore, within the distributed estimation paradigm, we propose a communication-efficient estimator that can achieve the same convergence rate. We illustrate the performances of the estimators via some simulation examples and an empirical data analysis.
報告人簡介:練恒,現任香港城市大學數學系副教授,于2000年在中國科學技術大學獲得數學和計算機學士學位,2007年在美國布朗大學獲得計算機碩士,經濟學碩士和應用數學博士學位。先後在新加坡南洋理工大學,澳大利亞新南威爾士大學,和香港城市大學工作。在高水平國際期刊上發表學術論文30多篇,包括《Annals of Statistics》、《Journal of the Royal Statistical Society,Series B》、《Journal of the American Statistical Association》、《Journal of Machine Learning Research》、《IEEE Transactions on Pattern Analysis and Machine Intelligence》. 研究方向包括高維數據分析,函數數據分析,機器學習等。