報告題目(Title): Higher Symplectic Stacks in Differential Geometry
報 告 人(Speaker):朱晨暢 德國哥廷根大學
報告地點(Location): Zoom ID:889 1241 3953,密碼:330378
會議鍊接:https://us06web.zoom.us/j/88912413953?pwd=MXFjbkVJRzVFQ1R0WnpMSXQwZzcvZz09
Abstract: In this series of lectures, we'd like to explore higher symplectic stacks in differential geometry with the framework of Lie n-groupoids. We'll talk, in more or less details on,
1. Kan simplicial objects with Grothendieck pretopologies, Lie n-groupoids;
2. Lie 2-groups as categorification of Lie groups, Morita equivalence: via a) hypercovers, b) weak equivalences, c) bibundles (sometimes called Hilsum-Skandalis bibundles);
3.NQ manifolds (a sort of d.g. manifolds), Lie n-algebroids (as tangent complex of Lie n-groupoids);
4. m-shifted symplectic Lie n-groupoids, with example of BG (or Lie group) together with several interesting models of symplectic forms, symplectic Morita equivalence, I.M. (infinitesimal multiplicative) forms on Lie n-algebroids, which provide models of symplectic forms.
I. Lecture Information

報告人簡介:朱晨暢,德國哥廷根大學終身教授,奧林匹克數學競賽金牌(滿分)得主。1999年在北京大學獲得學士學位,2004年在加州大學伯克利分校獲得博士學位,瑞士蘇黎世聯邦理工學院博士後,2013年在德國哥廷根大學獲得終身職位。從事Poisson幾何,李群胚等高階微分幾何的研究。在Duke Math. J., Compos. Math., Adv. Math., JEMS, Math. Ann., Trans. Amer. Math. Soc., Comm. Math. Phys., IMRN, Ann. Inst. Fourier (Grenoble), 等雜志上發表高水平論文30餘篇。