當前位置: 首 頁 - 科學研究 - 學術報告 - 正文

伟德线上平台“吉大學子全球勝任力提升計劃”研究生系列短課程(2022-010)

發表于: 2022-10-07   點擊: 

報告題目(Title): Higher Symplectic Stacks in Differential Geometry

報 告 人(Speaker):朱晨暢  德國哥廷根大學

報告地點(Location): Zoom ID:889 1241 3953,密碼:330378

會議鍊接:https://us06web.zoom.us/j/88912413953?pwd=MXFjbkVJRzVFQ1R0WnpMSXQwZzcvZz09


Abstract: In this series of lectures, we'd like to explore higher symplectic stacks in differential geometry with the framework of Lie n-groupoids. We'll talk, in more or less details on,

1. Kan simplicial objects with Grothendieck pretopologies, Lie n-groupoids;

2. Lie 2-groups as categorification of Lie groups, Morita equivalence: via a) hypercovers, b) weak equivalences, c) bibundles (sometimes called Hilsum-Skandalis bibundles);

3.NQ manifolds (a sort of d.g. manifolds), Lie n-algebroids (as tangent complex of Lie n-groupoids);

4. m-shifted symplectic Lie n-groupoids, with example of BG (or Lie group) together with several interesting models of symplectic forms, symplectic Morita equivalence, I.M. (infinitesimal multiplicative) forms on Lie n-algebroids, which provide models of symplectic forms.


I. Lecture Information


報告人簡介:朱晨暢,德國哥廷根大學終身教授,奧林匹克數學競賽金牌(滿分)得主。1999年在北京大學獲得學士學位,2004年在加州大學伯克利分校獲得博士學位,瑞士蘇黎世聯邦理工學院博士後,2013年在德國哥廷根大學獲得終身職位。從事Poisson幾何,李群胚等高階微分幾何的研究。在Duke Math. J., Compos. Math., Adv. Math., JEMS, Math. Ann., Trans. Amer. Math. Soc., Comm. Math. Phys., IMRN, Ann. Inst. Fourier (Grenoble), 等雜志上發表高水平論文30餘篇。


Baidu
sogou