報告題目:Threshold convergence results for a nonlocal time-delayed diffusion equation
報告人:梅茗教授 McGill University & Champlain College, 加拿大
報告時間:2023年 5月18日 8:30-9:30
報告地點:騰訊會議 ID:526-7221-3895
或點擊鍊接直接加入會議:https://meeting.tencent.com/dm/2QY55jYQvvoK
校内聯系人:劉長春 liucc@jlu.edu.cn
報告摘要:In this talk we are concerned with the asymptotic behavior for nonlocal dispersion Nicholson blowflies equation in the n-dimensional space. By the method of Fourier transform, we first derive the decay estimates for the fundamental solutions with time-delay. Then, we obtain the threshold results with optimal convergence rates for the original solution to the constant equilibrium. Namely, when the ration of birth rate and death rate satisfies 0 < p/d < 1, the solution u(t, x) globally converges to the equilibrium 0 in the time-exponential form; when p/d = 1, the solution u(t, x) globally converges to 0 in the time-algebraical form; when 1 < p/d ≤ e, the solution u(t, x) globally converges to the non-trivial state u+ in the time-exponential form; and when e < p/d < e2, it locally converges to u+ in the time-exponential form.
This is a joint work with Rui Huang and Zhuangzhuang Wang, just published in J. Differential Equations (2023).
報告人簡介:梅茗教授,加拿大McGill大學兼職教授及Champlain學院的終身教授,博士生導師。2015年被聘為吉林省“長白山學者”講座教授,以及東北師範大學“東師學者”講座教授。主要從事流體力學中偏微分方程和生物數學中帶時滞反應擴散方程研究,在ARMA, SIAM, JDE, Commun.PDEs 等高水平雜志上發表論文100多篇,是多家SCI國際數學雜志的編委。并一直承擔加拿大自然科學基金項目,魁北克省自然科學基金項目,及魁北克省大專院校國際局的基金項目。