當前位置: 首 頁 - 科學研究 - 學術報告 - 正文

Sino-Russian Mathematics Center-JLU Colloquium(2024-005)—Compatible Poisson structures on multiplicative quiver varieties

發表于: 2024-02-21   點擊: 

報告題目:Compatible Poisson structures on multiplicative quiver varieties

報 告 人:Maxime Fairon

所在單位:Université de Bourgogne

報告時間:2024年2月29日 20:00-22:00

報告地點:ZOOM Id:904 645 6677,Password:2024

會議鍊接:

https://zoom.us/j/9046456677?pwd=Y2ZoRUhrdWUvR0w0YmVydGY1TVNwQT09&omn=87511211646


報告摘要: Any multiplicative quiver variety is endowed with a Poisson structure constructed by M. Van den Bergh through reduction from a Hamiltonian quasi-Poisson structure. The smooth locus of this variety carries a corresponding symplectic form defined by D. Yamakama through quasi-Hamiltonian reduction. In this talk, I want to explain how to include this Poisson structure as part of a larger pencil of compatible Poisson structures on the multiplicative quiver variety. The pencil is defined by reduction from a pencil of (non-degenerate) Hamiltonian quasi-Poisson structures, whose construction can be adapted to various frameworks, e.g. in relation to character varieties. I will start by explaining the simpler analogous situation that leads to a pencil of Poisson structures on (additive) quiver varieties, before detailing the multiplicative case. Moreover, I will show that it is possible to understand the construction through the lens of non-commutative Poisson geometry. Time allowing, I may comment on the application of this result to the spin Ruijsenaars-Schneider phase space; this shows the compatibility of two Poisson structures that appeared in independent works of Arutyunov-Olivucci (arXiv:1906.02619) and of Chalykh and myself (arXiv:1811.08727).


報告人簡介:Maxime Fairon is Maître de Conférences (equivalent to lecturer) at Institut de Mathématiques de Bourgogne, Université de Bourgogne, Dijon, France. His research interests are split between: i) classical integrable systems appearing in mathematical physics, and ii) non-commutative Poisson geometry.


Baidu
sogou