當前位置: 首 頁 - 科學研究 - 學術報告 - 正文

伟德线上平台、所2020年系列學術活動(第210場):楊家青副教授 西安交通大學

發表于: 2020-09-09   點擊: 

報告題目:Convergence analysis of the PML method for time-domain electromagnetic scattering problems

報 告 人:楊家青副教授 西安交通大學

報告時間:2020年9月10日上午 8:50-09:25

報告地點:騰訊會議 ID:233 270 107

會議密碼:0910

校内聯系人:呂俊良  lvjl@jlu.edu.cn


報告摘要:

In this talk, we will report our recent work on the perfectly matched layer (PML) method of the time-domain electromagnetic scattering problems in 3D. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coordinate stretching in the frequency domain. The well-posedness and the stability estimate of the PML problem are first proved based on the Laplace transform and the energy method. The exponential convergence of the PML method is then established in terms of the thickness of the layer and the PML absorbing parameter. As far as we know, this is the first convergence result for the time-domain PML method for the three-dimensional Maxwell equations. Our proof is mainly based on the stability estimates of solutions of the truncated PML problem and the exponential decay estimates of the stretched dyadic Green's function for the Maxwell equations in the free space.


報告人簡介:楊家青,西安交通大學副教授,博導。2012年博士畢業于中國科學院數學與系統科學學院;2012-2014年在中國科學院系統科學研究所做博士後;2014-2015年在香港中文大學做Research Fellow;2015年入職西安交通大學數學與統計學院,研究方向為反問題的數學理論與計算,在應用數學與計算數學領域的國際權威期刊 Inverse Problems, SIAM Journal on Numerical Analysis, SIAM Journal on Applied Mathematics, SIAM Journal on Imaging Sciences, Inverse Problems and Imaging, Journal of Differential Equations 等發表學術論文20餘篇。



Baidu
sogou