報告題目:Band truncation approximations for operators in lp uniform Roe algebras and applications
報 告 人:王勤 教授 華東師範大學
報告時間:2020年12月4日 14:30-15:30
報告地點:騰訊會議 ID:253 251 669 密碼:123456
校内聯系人:張遠航 zhangyuanhang@jlu.edu.cn
報告摘要:
Uniform Roe algebras are typically C*-algebras on discrete metric spaces which reflect large scale geometry of the underlying spaces. Recently, the l^p versions of uniform Roe algebras have attracted much
attention due to their applications in operator theory, operator algebras and K-theory.
In this talk, we will determine a large class of dense subspaces of l^p uniform Roe algebras of discrete groups whose elements can be approximated in operator norm by their band truncations. Under an l^p version of Rapid Decay condition, we construct a spectral invariant subalgebra of the l^p uniform Roe algebra of a discrete group. We also establish that the K-theory groups of these l^p operator algebras on discrete metric spaces with Yu's property (A) depend continuously on p.
報告人簡介:
王勤,華東師範大學數學科學學院算子代數研究中心教授、博士生導師,主要從事算子代數、粗幾何、非交換幾何等領域的研究,在非交換幾何的重要問題“粗Baum-Connes猜想”、“粗Novikov猜想”等方面取得了若幹重要成果,曾獲全國百篇優秀博士論文獎,入選教育部新世紀優秀人才支持計劃、上海市曙光學者、上海市浦江學者,在 J. Reine Angew. Math.、 Adv. Math. 、J. Funct. Anal.等國際權威期刊發表論文30餘篇。