當前位置: 首 頁 - 科學研究 - 學術報告 - 正文

伟德线上平台、所2020年系列學術活動(第303場):Friedrich Wagemann, Université de Nantes, FRANCE

發表于: 2020-12-01   點擊: 

報告題目:Cohomology of semisimple Lie- and Leibniz algebras

報 告 人:Friedrich Wagemann,Université de Nantes, FRANCE

報告時間:2020年12月4日 15:00-16:00

報告地點:Participer à la réunion Zoom

https://univ-nantes-fr.zoom.us/j/88618299866?pwd=c0I4MHZvam9ZbWUxNG9JSXk1VWllUT09

ID de réunion : 886 1829 9866

Code secret : 239126


校内聯系人:生雲鶴 shengyh@jlu.edu.cn


報告摘要:

The main theorem is joint work with Jörg Feldvoss (U. South Alabama, Mobile). We start by reviewing what one knows about the cohomology of semisimple Lie algebras. Then we introduce Leibniz algebras, Leibniz bimodules and the main computational tools. Afterward we report on Ntolo-Pirashvili's theorem about the Leibniz cohomology of semisimple Lie algebras. Our final topic is the Leibniz cohomology of semisimple Leibniz algebras where we show (together with Feldvoss) that all cohomology with values in a finite dimensional bimodule is zero in degree >= 2. This shows for example that semisimple Leibniz algebras are rigid. Another application is the Ext dimension of the category of finite dimensional bimodules over a semisimple Leibniz algebra (joint work with Jean Mugniéry) which turns out to be 2.


報告人簡介:

Friedrich Wagemann,法國南特大學教授,從事李理論與數學物理的研究,在Comm. Math. Phys., Adv. Math.等雜志上發表40餘篇高水平學術論文。


Baidu
sogou