報告題目:Sparse and Low-Rank Matrix Quantile Estimation With Application to Quadratic Regression
報 告 人:練恒 副教授
所在單位:香港城市大學
報告時間:2022年10月28日 星期五 10:30-11:30
報告地點:騰訊會議 ID:486350459
校内聯系人:趙世舜 zhaoss@jlu.edu.cn
報告摘要:This study examines matrix quantile regression where the covariate is a matrix and the response is a scalar. Although the statistical estimation of matrix regression is an active field of research, few studies examine quantile regression with matrix covariates. We propose an estimation procedure based on convex regularizations in a high-dimensional setting. In order to reduce the dimensionality, the coefficient matrix is assumed to be low rank and/or sparse. Thus, we impose two regularizers to encourage different low-dimensional structures. We develop the asymptotic properties and an implementation based on the incremental proximal gradient algorithm. We then apply the proposed estimator to quadratic quantile regression, and demonstrate its advantages using simulations and a real-data analysis
報告人簡介:練恒,現任香港城市大學數學系副教授,于2000年在中國科學技術大學獲得數學和計算機學士學位,2007年在美國布朗大學獲得計算機碩士,經濟學碩士和應用數學博士學位。先後在新加坡南洋理工大學,澳大利亞新南威爾士大學,和香港城市大學工作。在高水平國際期刊上發表學術論文30多篇,包括《Annals of Statistics》、《Journal of the Royal Statistical Society,Series B》、《Journal of the American Statistical Association》、《Journal of Machine Learning Research》、《IEEE Transactions on Pattern Analysis and Machine Intelligence》. 研究方向包括高維數據分析,函數數據分析,機器學習等。