當前位置: 首 頁 - 科學研究 - 學術報告 - 正文

伟德线上平台、所2023年系列學術活動(第036場):王楚善 博士 新加坡國立大學

發表于: 2023-05-05   點擊: 

報告題目Error estimates of numerical methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity

報 告 人:王楚善 博士 新加坡國立大學

報告時間:2023年5月8日 13:30

報告地點:數學樓第二報告廳

校内聯系人:黎文磊  lwlei@jlu.edu.cn


報告摘要: We establish optimal error bounds for time-splitting methods and exponential wave integrators applied to the nonlinear Schrödinger equation (NLSE) with low regularity potential and nonlinearity. In many physical applications, low regularity potential and/or nonlinearity are incorporated into the NLSE, such as square-well potential frequently employed in physics literature, disorder potential examined in the context of Anderson localization, and non-integer power nonlinearity in the Lee-Huang-Yang correction used for modelling and simulating quantum droplets.



報告人簡介:王楚善, 本科畢業于伟德线上平台, 現在新加坡國立大學攻讀博士學位, 導師包維柱教授.


Baidu
sogou