報告題目:Wave Equations with van der Pol Type Boundary Condition
報 告 人:馮兆生,University of Texas-RGV,CNSNS主編
報告時間:2019年12月26日10:00
報告地點:數學樓第二報告廳
報告摘要:
In this talk, we consider the one-dimensional wave equation on the unit interval [0, 1]. At the left end x = 0, an energy injecting boundary condition is posed, and at the right end, x = 1, the boundary condition is a cubic nonlinearity, which is a van der Pol type condition. This nonlinear boundary condition behaves like a van der Pol oscillator, causing the total energy to rise and fall within certain bounds regularly or irregularly. We apply the Devaney’s theory and Lie symmetry reduction method to present some theoretical and numerical results on chaotic vibrations.
報告人簡介:
馮兆生,美國德克薩斯大學RGV分校理學院教授,德克薩斯大學傑出成就獎獲得者。主要研究方向有非線性分析, 分支和混沌理論, 數學物理問題, 數值模拟和生物數學等。目前擔任國際知名一區學術期刊 Communications in Nonlinear Science and Numerical Simulation 的主編和 Electronic Journal of Differential Equations 的執行主編,同時擔任多個國際SCI學術期刊的編委和AIMS微分方程和動力系統的系列叢書的編委。