報告題目:On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance
報 告 人:王晚生 教授
報告時間:2019年8月3日13:30
報告地點:數學樓202
報告摘要:
In this paper the implicit-explicit (IMEX) two-step backward differentiation formula (BDF2) method with variable step-sizes, due to the non-smoothness of the initial data, is developed for solving parabolic partial integro-differential equation (PIDE), which describes the jump-diffusion option pricing model in finance. It is shown that the variable step-sizes IMEX BDF2 method is stable for abstract PIDE under suitable time step restrictions. Based on the time regularity analysis of abstract PIDE, the consistency error and the global error bounds for the variable step-sizes IMEX BDF2 method are provided. After time semi-discretization, spatial differential operators are treated by using finite difference methods and the jump integral is computed using the composite trapezoidal rule. A local mesh refinement strategy is also considered near the strike price because of the non-smoothness of the payoff function. Numerical results illustrate the effectiveness of the proposed method for European and American options under jump-diffusion models.
報告人簡介:
王晚生,上海師範大學教授,博導,數理學院副院長。2008年6月博士畢業于湘潭大學,華中科技大學、劍橋大學博士後,2004年7月-2018年1月在長沙理工大學工作,2018年2開始在上海師範大學工作。主要從事微分方程數值解方面的研究工作,主要研究興趣在泛函微分方程數值解、偏微分方程數值解、金融期權快速定價、非線性微分方程保結構算法等方面,以第一作者在《Numer. Math.》、《SIAM J. Numer. Anal.》、《SIAM J. Sci. Comput.》等期刊上發表學術論文60餘篇,獲湖南省自然科學獎二等獎2項(1項排名第一,1項排名第6)、霍英東青年教師獎等。主持國家自然科學基金項目3項、湖南省傑青等科研項目。曾訪問北京大學、加州大學爾灣分校、劍橋大學等國内外名校。系湖南省新世紀“121人才工程”第二層次人選、湖南省普通高校學科帶頭人、中國系統仿真學會仿真算法專業委員會委員、湖南省數學會常務理事。