報告題目:Nonconforming finite element Stokes complexes in three dimensions
報 告 人:黃學海 教授 上海财經大學 伟德线上平台
報告時間:2020年8月24日 15:00-16:00
報告地點:騰訊會議 ID:829 618 411
會議鍊接:https://meeting.tencent.com/s/Gv3yDJIks4WV
校内聯系人:陶詹晶 zjtao@jlu.edu.cn
報告摘要:
Two nonconforming finite element Stokes complexes ended with the nonconforming P1-P0 element for the Stokes equation in three dimensions are constructed. And commutative diagrams are also shown by combining nonconforming finite element Stokes complexes and interpolation operators. The lower order H(gradcurl)-nonconforming finite element only has 14 degrees of freedom, whose basis functions are explicitly given in terms of the barycentric coordinates. The H(gradcurl)-nonconforming elements are applied to solve the quad-curl problem, and optimal convergence is derived. By the nonconforming finite element Stokes complexes, the mixed finite element methods of the quad-curl problem is decoupled into two mixed methods of the Maxwell equation and the nonconforming P1-P0 element method for the Stokes equation, based on which a fast solver is developed.
報告人簡介:
黃學海,上海财經大學伟德线上平台教授、博導,畢業于上海交通大學數學系。研究方向為有限元方法,特别是高階偏微分方程的高效數值方法。在Math. Comp.、SIAM J. Numer. Anal.、Numer. Math.、J. Sci. Comput.等國際期刊發表SCI論文二十多篇,其中ESI高被引論文1篇。科研課題方面,正主持1項國家自然科學基金面上項目,主持完成國家自然科學基金青年項目1項、數學天元項目1項和浙江省自然科學基金項目2項,參與多項國家自然科學基金面上項目和浙江省自然科學基金項目。獲中國計算數學學會優秀青年論文競賽優秀獎,博士學位論文被評為上海市研究生優秀成果(學位論文)。