報告題目:Steady Subsonic flows in High Dimensional Nozzle
報 告 人:闫偉 副研究員 北京應用物理與計算數學研究所
報告時間:2021年6月9日 14:00-15:00
報告地點:天元數學東北中心第六研讨室
校内聯系人:郭斌 bguo@jlu.edu.cn
報告摘要:
In this talk, we present our result on subsonic irrotational flows in a multi-dimensional (n>1) infinitely long nozzle with variable cross sections. The flow is described by the inviscid potential equation, which is a second order quasilinear elliptic equation when the flow is subsonic. We prove the existence and the uniqueness of the global uniformly subsonic flow in a general infinitely long nozzle of arbitrary dimension. Furthermore, we show that there exists a critical value of the incoming mass flux such that a global uniformly subsonic flow exists uniquely, provided that the incoming mass flux is less than the critical value. This gives a positive answer to the problem of L. Bers.
報告人簡介:
闫偉,北京應用物理與計算數學研究所副研究員,主要從事非線性偏微分方程和流體力學計算方法研究。在ARMA, CMP, JCP等發表學術論文10餘篇,主持基金項目3項,曾獲計算物理實驗室創新獎,中物院研究生部優質課程獎。