報告題目:New Development of Conforming Finite Elements -- Beyond Nedelec
報 告 人:張智民 教授 美國韋恩州立大學教授
報告時間:2020年7月2日 9:00
報告地點:騰訊會議ID:778 812 043
會議鍊接:https://meeting.tencent.com/s/vz4UkXZdwf2e
校内聯系人:陶詹晶 zjtao@jlu.edu.cn
報告摘要:
In two ground breaking papers (1980 and 1986), Nedelec proposed $H(curl)$-conforming elements to solve electromagnetic equations that contains the “curl” operator. It is more or less as the $H^1$-conforming elements (or $C^0$ elements) for elliptic equations that contains the “grad” operator. As is well known in the finite element method literature, in order to solve 4th-order elliptic equations such as the bi-harmonic equation, $H^2$-conforming elements (or $C^1$-elements) were developed. Recently, there have been some research in solving electromagnetic equations which involve four “curl” operators. Hence, construction of $H(curl curl)$-conforming elements becomes necessary. In this work, we construct $H(curl curl)$-conforming elements for rectangular and triangular meshes and apply them to solve quad-curl equations as well as related eigenvalue problems.
報告人簡介:
張智民,美國韋恩州立大學教授、Charles H. Gershenson 傑出學者,世界華人數學家大會兩次45分鐘報告人,現任和曾任10個國内外數學雜志編委,包括Mathematics of Computation、Journal of Scientific Computing、Numerical methods for Partial Differential Equations 、Journal of Mathematical Study、Journal of Computational Mathematics、CSIAM Transaction on Applied Mathematics、《數學文化》等。發表SCI論文180餘篇,論文google 引用4600餘次,主持過10個美國國家基金會的項目。張智民教授1982年在中國科學技術大學數學系畢業取得學士學位,1985年在中國科學技術大學數學系畢業取得碩士學位,師從石鐘慈院士,1991年在美國馬裡蘭大學取得博士學位,師從有限元專家美國工程院院士Ivo Babuska教授。張智民教授長期從事計算方法,尤其是有限元方法的研究,在超收斂、後驗誤差估計、自适應算法和PDE特征值計算等領域的開拓性研究取得了多項創新成果。在國際上第一個建立起廣為流行的ZZ離散重構格式的數學理論,并首次提出了基于多項式守恒的離散重構格式。所提出的多項式保持重構(Polynomial Preserving Recovery—PPR)方法2008年被大型商業軟件COMSOL Multiphysics采用。