報告題目:Two topics in learning with kernels
報 告 人:張海樟教授 中山大學
報告時間:2020年9月17日上午 9:25-10:00
報告地點:騰訊會議 ID:206 372 412
會議密碼:0917
校内聯系人:王蕊 rwang11@jlu.edu.cn
報告摘要:
We report two pieces of our recent work on learning with kernels: admissible kernels for RKHS embedding of probability distributions, and margin error bounds for the SVM on Banach spaces. These are joint with my PhD student Liangzhi Chen.
Similarity measurement of two probability distributions is important in many applications of statistics. Embedding such distributions into a reproducing kernel Hilbert space (RKHS) has many favorable properties. The choice of the reproducing kernel is crucial in the approach. So far, studies in the literature have been focusing on characteristic kernels which ensure the embedding to yield a metric. We attempt to impose a sophisticated admissible criterion on the reproducing kernel in measuring the similarity of a class of probability distributions.
Support vector machines, which maximize the margin from patterns to the separation hyper-plane subject to correct classifification, have received remarkable success in machine learning. Recently, there have been much interest in developing large margin classifification in Banach spaces. We establish a margin error bound for the SVM on reproducing kernel Banach spaces, thus supplying statistical justifification for pursuing large margin classifification in Banach spaces.
報告人簡介:
張海樟,中山大學教授。2003年本科畢業于北京師範大學數學系,2006年碩士畢業于中科院數學所,2009年博士畢業于美國雪城大學(Syracuse University)數學系,2009年6月-2010年5月 密歇根大學(University of Michigan)博士後。2010年6月起擔任中山大學教授、博士生導師。主要的研究興趣為應用調和分析與學習理論,在JMLR, ACHA, J. Complexity等發表專業論文三十餘篇,代表性的工作為再生核巴拿赫空間理論和時頻分析的Bedrosian恒等式。其與密西根大學Jun Zhang教授合作的基于再生核巴拿赫空間的分類理論入選 Cambridge University Press出版的《數學心理學新手冊》。主持國家自然科學基金四項,其中面上項目兩項、優秀青年基金一項。