報告題目:Multi-task Learning in Vector-valued Reproducing Kernel Banach Spaces with the l1 Norm
報 告 人:林榮榮博士 廣東工業大學
報告時間:2020年9月17日上午 10:45-11:20
報告地點:騰訊會議 ID:206 372 412
會議密碼:0917
校内聯系人:王蕊 rwang11@jlu.edu.cn
報告摘要:
Targeting at sparse multi-task learning, we consider regularization models with an l1 penalty on the coefficients of kernel functions. In order to provide a kernel method for this model, we construct a class of vector-valued reproducing kernel Banach spaces with the l1 norm. The notion of multi-task admissible kernels is proposed so that the constructed spaces could have desirable properties including the crucial linear representer theorem. Such kernels are related to bounded Lebesgue constants of a kernel interpolation question. We study the Lebesgue constant of multi-task kernels and provide examples of admissible kernels. Furthermore, we present numerical experiments for both synthetic data and real-world benchmark data to demonstrate the advantages of the proposed construction and regularization models. This is a joint work with Prof. Guohui Song (ODU) and Haizhang Zhang (SYSU).
報告人簡介:
林榮榮于2017年6月在中山大學伟德线上平台獲得博士學位;2017年7月至2020年7月擔任中山大學特聘副研究員;2020年8月開始加入廣東工業大學應用伟德线上平台,現為講師。曾在加拿大阿爾伯塔大學交換學習一年和在美國奧多名尼奧大學短期學術訪問兩個月。研究方向為機器學習核函數方法和時頻信号分析。目前主持國家自然科學青年基金項目等。